Learnings To-date from PhD Workforce Interviews

Randolph Kirchain, Richard Roth, and Sajan Saini
What are the advanced engineering workforce needs for the integrated photonics industry?

- **Research questions**
 - What types of workers are needed?
 - What skills do these workers need?

- **Scope and focus**
 - Industry
 - Photonics
 - Type of work
 - Engineering
 - Level of education and training
 - Highly-skilled workers
 - PhD and advanced masters
 - Geographic
 - Domestic workers only

Research Challenge:
How do we characterize the skills needed for PhDs and highly-skilled master’s engineers?
Structure of the Interview

- Position in supply chain
 - Most firms answer: component fabricator, assembly/package/test/. & system integrator

- Types of hires
 - EE, DMSE, MechE, Physics, and occasionally from ChemE?
 - Question dropped for time and because of similarity of responses

- Number of hires
 - Question dropped because of quality of responses

- Skill importance and proficiency of new hires
 - E.g., “Create coding scripts to model photonics devices and/or parts of a photonic integrated circuit”

- Challenge in hiring US citizens
Who We’ve Interviewed

- 3M (Terry Smith, formerly), Promex (Dick Otte), Macom (Rich Grzybowski)
- AIM Photonics (Nick Fahrenkoff), RIT (Stefan Preble)
- Broadcom (Alexis Bjorlin, Near Margalit)
- Facebook (Katharine Schmidke)
- Genalyte (Ryan Bailey)
- GenXComm (Thien-An Nguyen)
- Infinera (Gloria Hoefler)
- Intel (Ling Liao)
- Juniper Networks (Daniel Sparacin, formerly)
- L3 Harris (Arthur Paolella)
- Lincoln Labs (Paul Juodawlkis, Cheryl Sorace-Agaskar)
- Litexel (Xiaochen Sun)
- Lockheed-Martin (Guy Chriqui)
- Luxtera/Cisco (Peter De Dobbelaere)
- Microsoft Azure (Brad Booth)
- Nokia Labs (Mark Earnshaw)
- NVIDIA (Larry Dennison, Tom Gray)
- Pendar (Christian Pfluegl)
- Phase Sensitive Innovations (Dennis Prather)
- Raytheon (Benn Gleason)
- RMD (Harish Bhandari)
- TriLumina (Jim Foresi)
- Tyndall Institute (Peter O’Brien), Univ. of Rochester (Tom Brown)
- Univ. of Rochester (Jaime Cardenas)
- MIT (Anu Agarwal, J.J. Hu, Jurgen Michel, Kazumi Wada)
Photonics PhDs: General Learnings

- Most firms say that they are able to find PhDs but...
 - Challenging to find someone with specific integration expertise
 - Challenging for
 - Specific Subsectors
 - III-V
 - RF
 - Defense
 - Startups and small firms
 - Specific locations

- Firms are hiring from many disciplines
 - EE
 - Materials Science
 - Physics
 - Optics (UofR and U of Arizona)
 - Mechanical engineering
 - A few from Chemical Engineering

- Supply seems to concentrated at a few key universities
To understand skill needs, we developed four archetypes of industrial PhD work

- **Process Engineer (component fabrication):**
 - An engineer trained in semiconductor materials processing, who is experienced to work in a cleanroom environment with deep UV lithography, wet and dry etching, chemical and physical vapor deposition, and thermal annealing tools, in order to fabricate integrated photonics circuits on 300mm silicon wafers.

- **Process Engineer (packaging):**
 - An engineer trained in semiconductor materials processing, who is experienced to work in a packaging and assembly environment with wire bonding, pick and place, wet etching, and epoxy tools, in order to manufacture a modest-to-full hermetic-sealed integrated photonics chip.

- **Photonic Integrated Circuit Designer:**
 - An engineer trained in photonics and semiconductor science, and a specific application area, who is experienced to work with electronic-photonics design automation (EPDA) software tools and a process design kit (PDK), in order to model integrated photonics devices, simulate and lay out integrated photonics circuits, design review check and create a tapeout file for submission to a photonics foundry for chip fabrication.

- **Applications System Engineer:**
 - An engineer trained in a college-level electromagnetism, and specific application area, who is experienced to create experimental models, and to create programmed software coding or operate commercial software for simulating the functions and tolerances of a technological system, in order to determine how the system performance may be enhanced by the addition of novel photonics chip components.
Photonic Integrated Circuit (PIC) Designer

- **Computer modeling**
 - Create coding scripts to model photonics devices and/or parts of a photonic integrated circuit
 - Advanced proficiency in commercial EPDA/EDA tools:
 - device modeling
 - PIC circuit simulation & layout
 - PIC circuit layout and DRC check (.gds tapeout)
 - Proficiency in multi-physics simulation tool

- **Design**
 - Use one or more commercial/open source PDKs (interpret design guide, compact models)
 - Supplement PDK w open source/custom components
 - Create parametric cells for circuit sim in a PDK
 - Design for Test (DfT): design and layout devices or sub-circuits for in-line/off-line test characterization
 - Design for (DfM): create a design-centered layout for a device. ... or PIC circuit

- **Fundamentals**
 - Basic materials science and processing knowledge
 - Use statistical methods to evaluate process variation

- **Computer modeling**
 - Important for all
 - Coding is most important for firms that are:
 - not in Si, smaller firms, and those trying to be at cutting edge of performance
 - Commercial software is most important for larger firms focused on high volume production
 - Multi-physics simulations seemed universally important
 - GAP:
 - Generally students are capable with software
 - Some programs have less resources (so more coding, less commercial experience); Some research groups are very strong

- **Design**
 - Importance of PDKs depends on focus of firm
 - Position in supply-chain or applications translate into PDKs being less relevant (light sources, photonic sensors)
 - Grads: weaker ability to develop parametric models
 - GAP: Design for test, manufacturing, and packaging
 - Very important, but absent in new graduates

- **Fundamentals**
 - Most firms feel this is valuable (unlike electronics, need materials science knowledge)
 - Allows you to understand the simulations and not blindly trust tools
 - Significant variation in the amount of fundamental knowledge that new graduates have
 - Specialty firms & R&D oriented firms feel this is more important (RF, InP)
 - GAP:
 - Cross-training across thermal, mechanical, photonic, electronic
 - Communications skills among a design team
 - Ability to communicate to stakeholders in development process
Process Engineer

Computer Modeling
- Create coding scripts to model materials science and/or materials processing phenomena
- Work with EPDA or EDA software tools

Process Design
- Interpret Process Design Kit layout fabrication procedure
- Design process flow for fabrication of chip die
- Design Standard Operating Procedure (SOP) for 1+ fab tools (thin film deposition, lithography, etch, anneal)
- Co-design safety training and execute safe practice with one or more fabrication tools

Testing Design
- Design optical in-line & off-line test characterization of semiconductor wafers, thin films, and/or devices; interpret test data, diagnose sources of fabrication errors
- Design electrical in-line & off-line test characterization of semiconductor wafer, thin films, and/or devices; interpret test data, diagnose sources of fabrication errors
- Define a reference standard and calibrate fab tool with respect to it

Design for Manufacturing
- Diagnose sources of fabrication errors; evaluate process variation and revise error management in fab tool
- Use statistical methods to evaluate process variation and other aspects of statistical process control (e.g., Monte Carlo simulation method)

Fundamentals
- Prepare charts or diagrams describing the standard operating procedure and in-line characterization steps

Computer modeling
- Less important than for PIC designer
- Packaging - Multiphysics simulation (e.g., COMSOL) is important for design (thermal management)
- For firms
 - WITH fab

Process design
- Need knowledge of PDKs
 - less relevant for packaging focused process engineer and III-V firms
- Caretakers of SOPs would only be relevant to engineers at the FAB

Testing design
- Very important activity for the process engineer
 - Firms without fabs also have to consider testing during the design stage
 - Generally significant gap in training because most PhD training doesn’t cover this
 - Need to also test for reliability

Design for manufacture
- Very important for process engineer and PIC designer
- Generally weak skill for new grads
- Design to optimize yield and ensure reliability
- Statistical process control was cited as a gap

Fundamentals
- Communication skills among the design team (and outside of the team) were cited as a gap
- Probability and statistics was noted as a gap
- Materials science expertise was more critical for III-V and specialty material firms

Packaging
- Design for packaging is a significant challenge and one where there is a notable training gap

Very diverse interpretation of this job description across firms
Application Systems Engineer

- Computer modeling
 - Create coding scripts to model photonics devices and/or photonic block components in a simulated system
 - Use commercial software to model photonic block components and simulate application-specific systems

- Design
 - Define a Figure of Merit for the system and assess design trade-offs to optimize application-specific performance
 - Select system's materials, carrier freq, power source criteria, subject to manufacturing and cost constraints

- Test and troubleshoot
 - Design, build, and troubleshoot in-house prototypes of application systems; configure FPGAs for model systems
 - Design, build, and test in-field experiments to assess system controls, constraints, performance specifications
 - Identify sources & magnitude of manufacturing variation in system; determine a design-centered configuration

- Fundamentals
 - Proficiency in materials science
 - Proficiency in mechanical design
 - Proficiency in optical physics: light confinement, guiding, interferometric concepts

- DIVERSE interpretation of this job; often for more experienced engineers

- Computer modeling
 - Important
 - Depending on specific focus may extend beyond photonic modeling to include mechanical systems issue

- Design
 - Most important task for systems engineer
 - Sometimes lacking skill for recent grads
 - Recent grads tend to focus on performance rather than
 - Cost
 - Customer needs
 - Design for in-use environment is a gap
 - Design for packaging and testing is a gap

- Test and Troubleshoot
 - Recent grads tend to be able to do this for low-volume or lab scale systems
 - May be a gap for large-volume
 - In-field testing is a gap
 - RF testing is a gap
 - Design for manufacturing is a gap

- Fundamentals
 - Knowledge of materials, mechanical, and optics is valuable
 - RF knowledge is lacking
Overall Learning:
To be successful in industry, photonics PhDs need more Cross-training

- Mentioned by nearly everyone
 - Computer modeling of devices/ circuits/systems is critical, but most PhDs are competent in modeling
 - Mastery of either custom or use of commercial packages
 - Cross-training needed in process or design
 - Designers need more knowledge about, process engineers need to understand design
 - Mindset to design for manufacturing and testing (rather than top performance)
 - Manage yield and reliability
 - Manage process variation
 - Statistical process control, Design of experiments, Data science
 - Understanding what the customer needs
 - Packaging
 - Generally, not covered in PhD programs
 - Balancing, mechanical - optical - thermal
 - Awareness of bigger picture
 - Knowing the application area
 - What are the processing, packaging, and testing options

- Other topics raised
 - Multi-physics simulation and design
 - Mechanical engineering
 - Managing thermal and mechanical stresses
 - In-use environmental constraints / impacts
 - Making cost-aware decisions
 - Make vs buy
 - Curiosity and the drive to own and therefore solve problems
 - Creativity
 - Communications
 - Particularly outside the design team (management, customers)
Courses that should be developed

- Design for manufacturing
 - Process variation and limitations, Testing
- Design for packaging
 - Multi-physics simulation
- Design for testing
 - RF, In-line, End-of-line
- Case-study based course
 - Photonic system (e.g., VCSEL in Lidar applications)
 - Successes and failures
 - Understanding the industry big-picture
- Application course to understand tradeoffs
 - RF photonics
 - Lidar
 - Chemical sensors (in development)
 - Datacom
- Fundamentals
 - ... of Integrated photonics (in development)
 - ... of manufacturing
 - Statistical process-control, Six-sigma methods, cost